
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Cortical Columns as the Base Unit for Hierarchical
and Scalable Machine Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Studying the cortex via columnar organization of neurons is a perspective. One
which is more holistic than single cell models but still far less ambitious than
studying diverse networks [1]. Though there are confusions in terminology, study-
ing columnar organization instead of neurons have allowed many researchers to
attain a functional understanding of and ability to model processes such as map
cell placement [9] and pattern recognition. We report an extension to a model
proposed by A.G. Hashmi, M.H. Lipasti. We discuss the biological plausability
of cortical column modeling and show a two level implementation.

1 Biological Background

Lorente de No first described what are now known as cortical columns in 1938 [7]. Then, he sug-
gested that these originations of cells could be called an “elementary unit” which builds to brain
function. In 1957, Mountcastle gave the name cortical columns. Since the initial descriptions and
definitions, the term “cortical column” is widely used and is the source of some confusion. In ad-
dition, the term hyper column is used as well. Here, we will refrain from using “general” terms as
possible.

A “cortical column” in the broad sense, refers to the vertical organization of neurons found in the
cortex. We use the terms minicolumn and macrocolumn to be more precise. A minicolumn is
a vertically organized group of neurons, between 80-100, which are responsible for independent
receptive fields. These minicolumns communicate with other minicolumns in a organization termed
the macrocolumn. Each macrocolumn has found to contain between 60-80 minicolumns [1].

Much of the interest in cortical columns arise from how they appear to code for information. The
minicolumns of each macrocolumn appear to traverse laminas II - VI with feed-forward, feed-back,
and horizontal connections. Calvin (1998) has suggested that laminas II and III code for associa-
tions, laminas V and VI code out, and lamina IV receives the inputs [6]. These mechanisms also
seem to represent one orthogonal type of input, where minicolumns use lateral inhibition to sharpen
their borders and increase their own field’s definition [5]. The mechanism for this process has been
suggested to be derived from axon bundles of double bouquet cells [5].

These attributes are even more attractive because no research has yet to find minicolumn activity
outside its own macrocolumn. This suggests that they act as independent feature detection and
processing agents. In-vivo mouse studies show that in the barrel cortex the minicolumn excitation
and inhibition connections work to enhance important information while suppressing distracting
information [4].

Furthermore, these general methodologies for processing are nearly identical throughout the central
nervous system. Columns integrate a diverse set of information; including auditory, visual, sensory,
motor, and memory [1]. So far, the studies of these species support the concept of using cortical

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

columns as functional units for brain processing. However, some refute the use of cortical columns
because of their limited appearance in many species with similar visual function [8]. Nonetheless,
at least in applicable species cortical columns remain very attractive for conceptual and modeling
studies.

Figure 1: Adapated from [1].

2 The Predictor Module

Predictor modules were used to model each cortical column[10]. Each module consists of two units:
a predictor unit and a code unit, and exhibits both vertical and horizontal connections. Each module
will code for an independent feature by performing predictability minimization of its code unit.

2.1 Requirements

This model, based on predictability minimization, was chosen for multiple reasons.

Biological Plausibility Though based on the perceptron, the model described here resembles bi-
ological cortical columns when considering a higher level of abstraction (i.e., ignoring
individual neurons). The horizontal connections found between predictor unit of one mod-
ule and the code units of the others mimic connections found in layers II and III between
multiple cortical columns. The code unit, on the other hand, resembles Purkinje cells in the
cerebellum: neurons will modify their synaptic weightings when receiving simultaneous
activations at two of its inputs so that this does not occur again.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Scalability To increase the amount of features for which the system encodes, we simply add more
predictor modules. The amount of operations executed during the training process increases
linearly with the amount of predictor modules. Dimensionality of the input data is similarly
not a problem.

Hierarchical Though single-layer systems are considered for this explanation, the idea can be ex-
tended. The outputs of a series of modules can give rise to the inputs to another layer.
These modules can therefore be “stacked” on top of each other.

2.2 System Dynamics

As mentioned before, each predictor module is made up of one predictor unit and one code unit.
Code units will lock on to different features while their predictor unit will assure the independence of
the coded feature. To do so, an objective function is considered (such as an error function)
which is maximized by the code unit and minimized by the predictor unit by use of backpropagation;
a coevolution of both can then occur until an equilibrium is reached.

3 Methods & Implementation

The model has been implemented in MATLAB R©. Multiple systems were tested (single- and multi-
layer) with datasets of varying size and dimensionality. The notation used is explained below.

Symbol Explanation
xp The pth input vector.
ypi Output of the ith code unit, given input p, xp.
P p
i Output of the ith predictor unit, given input p, xp.
ȳi Average output of the ith code unit.
zp Reconstruction of input pattern p, xp.
U Code unit weights.
V Predictor unit weights.

3.1 Objective function

Initially, the following error function was considered:

T = αV − βI − γH (1)

Where α, β, γ > 0 are constants, V =
∑

i,p(ȳi − ypi )2, H =
∑

i,p(P p
i − ȳi)2 and I =

∑
p(zp −

xp)T (zp − xp). However, this can be simplified as explained by J. Schmidhuber ?? to:

VC =
∑
i,p

(P p
i − y

p
i )2 (2)

3.2 Code units

Once the input patterns are fed into the code units, their output is calculated and compared to the
output of their corresponding predictor units. Their weights are updated by gradient ascent of the
of the error function. A scaling factor inversely proportional to the absolute values of the current
weights is introduced to prevent much variation once the module has locked on to an independent
feature.

Ûi = Ui + δUi = Ui + α
∂Ei

∂Ui
= Ui − α× (Pi − σ(yi))(1− σ(yi))σ(yi)× η × xp (3)

Where α = (
∏m

j=1 |U
j
i |)−1 and η is the learning rate.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.3 Predictor units

The vector V , containing the weights for the predictor units, must also be updated during each
iteration. Predictor unit i receives its input, yi, which can be described as a vector whose elements,
yji , are the outputs of all code units, such that i 6= j.

A similar method is then used to update the weightings, this time using gradient descent (since the
objective function is to be minimized by the predictor units) as well as a different learning rate.

4 Results

A simple two-level system has been set up, with four cortical columns on the first level and one on
the second. Four patterns are presented to the first level, where each cortical column locks on to
one (and only one) ‘feature’ (i.e. pattern). After each iteration of the training process, and output
vector is generated when all four patterns are presented, encoded and then fed into the second level
of the system. One iteration of the training process is executed on the second level using the newly
generated pattern (i.e. recognize the larger pattern, made up of four smaller ones) as a whole.

Once the whole process has been completed, we can see which patterns each cortical column fires
for, as can be seen in Figure 2.

Figure 2: Pattern numbers are found on the x-axis. Each colored line represents the firing state of a
different cortical column.

An interesting property exhibited by the system (especially visible when considering the second
layer) is that cortical columns may still fire when presented with a similar (yet not identical) pattern
for which they encode.

5 Future Work

After verifying that the described system can perform unsupervised learning when presented with an
array of different input patterns, as well as constructing multi-layered systems, a number of potential
improvements were considered. These improvements are related to both software and hardware.

First and foremost, a nonlinear relationship between learning rates (both for the predictor units and
the code units) and dimensionality of the input patterns (as well as the size of the dataset) was
observed for accurate pattern recognition. These relationships could be determined experimentally,
but was not done due to time constraints. The total number of iterations for each of the two nested
loops which are executed for optimal learning conditions can also be determined experimentally,
although there will probably exist an interdependence between these values and those of the learning
rates. The final software-related improvement is connected to cortical column thresholds. The
current system defines an independent threshold for each cortical column after training has finished;

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

however, it might be interesting to experiment with different setups (one threshold value for all
cortical columns, for example).

Once all corrections and improvements have been implemented, it is important to start looking at
the hardware side of the system. Current hardware is not designed for machine-learning algorithms.
GPGPUs (General Purpose Graphical Processing Units) may provide a better foundation for this
method due to the inherent parallelism found on these chips. This implementation would require
translation of the algorithm to a lower-level language (such as C), and has already been performed
by researchers at the University of Wisconsin [12]. However, initial testing sheds light on some
inefficiencies found in these setups.

6 Conclusion

Although not applicable to all species, cortical column modeling is an effective approach to achieve
unsupervised learning and information processing. In those species that display cortical columns,
especially primates with higher function, the cortical column perspective should be considered. As
we show, the models are able to process information and report to other layers. Importantly, this
abstraction allows a macrocolumn to report to other regions of the brain, i.e. the other hemisphere
or hypothalamus, with one connection. The independence of macrocolumns prunes the number of
connections which report to other areas of the brain, which is not directly achievable or biologically
plausible in neuron networks [1].

References

[1] D. Buxhoeveden, M. Casanova. The minicolumn hypothesis in neuroscience. Brain
125(2002):935-951.

[2] V. Mountcastle. The columnar organization of the neocortex. Brain 120(1997):701-722.
[3] D. Hubel, T. Wiesel. Functional Architecture of Macaque Monkey Visual-Cortex. Proceedings

of the Royal Society B: Biological Sciences 198.1130 (1977):1-.
[4] J. Porter, C. Johnson, A. Agmon. Diverse types of interneurons generate thalamus-evoked

feedforward inhibition in the mouse barrel cortex. J Neurosci 2001; 21: 2699-710.
[5] J. DeFelipe, I. Farinas. Chandelier cells and epilepsy. [Review]. Brain 1999; 122: 1807-22.
[6] W. Calvin. Competing for consciousness: how subconscious thoughts

cook on the back burner. [Online]. 1998, April 30; Available from:
http://williamcalvin.com/1990s/1998JConscStudies.htm last updated April 30, 2001.

[7] Lorente de No R. The cerebral cortex: architecutre, intracortical connections, motor projec-
tions. In: Fulton JF, editor. Physiology of the nervous system. London: Oxford University
Press; 1938. p. 274-301.

[8] J. Horton, D. Adams. (2005). The cortical column: a structure without a function. Philosophical
Transactions of the Royal Society B: Biological Sciences, 360(1456), 837-862.

[9] Martinet et al. Map-Based Spatial Navigation: A Cortical Column Moel for Action Planning
2008

[10] J. Schmidhuber. Learning Factorial Codes by Predictability Minimization. University of Col-
orado, 1991

[11] A.G. Hashmi, M.H. Lipasti. Cortical Columns: Building Blocks for Intelligent Systems. Uni-
versity of Wisconsin, 2009

[12] A. Nere, M. Lipasti. Cortical Architectures on a GPGPU. University of Wisconsin, 2010.

5


